INFLUENCE OF NANOMETAL SOLUTIONS ON THE INTENSITY OF OXIDATION-REDUCTION PROCESSES IN THE STORAGE OF PEAR FRUIT

Keywords: pear fruits, respiration rate, titratable acidity, sugars, sugar-acid index, taste, storage

Abstract

Researches are devoted to the study and scientific substantiation of the influence of solutions of nanometals on the intensity of oxidative-reduction processes in the fruit of the pear during the long-term storage. To store fruits, pears were harvested when the ergonomic degree of ripeness reached, typical in shape and color. Inspection, sorting and calibration of the fruit were carried out prior to storage. The treatment of products with solutions of nanometals was carried out in the preparatory compartment of the storage with forced cooling. The fruits were loaded into baths with working solutions of nanometals. After drying, the fruits were packed in containers. At the same time, the pears were arranged diagonally, guiding the fistula in the intervals between the fruits of the next row. Treatment options: control - fruit pears without processing; option 1: 60% nanometal solution which consists of Ag and Mg; Option 2: 1 percent solution of nanometals which consists of Ag and Mg. In addition to nanometals, glycerol, propylene glycol and water were included in the working solutions. Pear fruit storage was carried out in a refrigerating chamber at a temperature of 0 ± 2 ° С, relative humidity of 95%. As a result of the research, it was found that treatment with nanometal solutions contributed to stabilizing the intensity of the respiration of the fruits at a level of 20 mg СО2 kg / h during the whole period of storage. A slight increase in the intensity of respiration (1.3 times) was recorded for 180 days of storage of pears of the Kyrgyz winter variety when treated with 60% nanometal (option 1). Along with this, in the fetuses of the control variant, the climacteric growth of respiration was observed for 90 ... 120 days of storage. It was determined that the average loss of titratable acids in fruits of control variants was 70%, and sugars were 58% of the initial value. Fruit treatment with nanometal solutions reduced the average loss of titratable acids by 23% on average during the storage period, and by 6% in total sugars and sucrose by 8%. In this case, within the same grade, the specified level of loss was almost the same and did not change statistically depending on the variant of processing. It was shown that post-harvest treatment with nanometal solutions contributed to the formation of a more harmonious taste of the pears of different pomological varieties during storage.

References

1. Лісіна А. В., Онучін Ю. Н., Воробьев В. Ф. Вплив обробок антиоксидантами і високими дозами СО2 на зміну хімічного складу плодів груші при зберіганні. Садівництво і виноградарство. 2010. № 1. С. 9-11.
2. Сердюк М. Є. Використання антиоксидантних препаратів для запобігання біотичним та абіотичним стресам під час зберігання плодів та ягід. Хімія, агрономія, сервіс. 2010. № 7. С. 52-53.
3. Amiot-Carlin M. J. Fruit and vegetable consumption: what benefits, what risks? La Revue du praticien. 2019. Vol. 69 (2). Р. 139-142.
4. Effect of tamarindus coating on post-harvest quality of apples and pears stored at different conditions / A. M. Mohite [et al.]. Carpathian Journal of Food Science & Technology. 2018. Vol. 10, № 3. Р. 17-25.
5. Окара А. И. Нанотехнологии в производстве пищевых продуктов: состояние нормативной базы и проблемы. Вестник ХГАЭП. 2011. № 1 (52). С. 79-85.
6. The Role of Nanotechnology in the Fortification of Plant Nutrients and Improvement of Crop Production / E. E. Elemike [et al.]. Applied Sciences, 2019. 9(3). Р. 499. DOI: 10.3390/app9030499.
7. Applications and implications of nanotechnologies for the food sector / Q. Chaudhry [et al.]. Food Addit. Contam. 2008. Vol. 25. Р. 241–258. DOI: 10.1080/02652030701744538.
8. Chaudhry Q, Castle L. Food applications of nanotechnologies: An overview of opportunities and challenges for developing countries. Trends Food Sci Technol. 2011. Vol. 22. Р. 595–603.
9. Chen H., Weiss J., Shahidi F. Nanotechnology in nutraceuticals and functional foods. Food Technol. 2006. Vol. 60. P. 30–36.
10. Ozimek L., Pospiech Ed., Narine S. Nanotechnologies in food and meat processing. Acta Sci. Pol., Technol. Aliment. 2010. Vol. 9. Р. 401–412.
11. Senturk Ah., Yalcin B., Otles S. Nanotechnology As A Food Perspective. Journal of Nanomaterials& Molecular Nanotechnology. 2013. Vol. 2, № 6. DOI: 10.4172/2324-8777.1000125.
12. Chen L., Remondetto G., Subirade M. Food protein-based materials as nutraceutical delivery systems. Trends Food Science & Technology. 2006. Vol. 17. Р. 272–283. DOI: 10.1016/j.tifs.2005.12.011.
13. Нанотехнологии в сельском хозяйстве / сост. Н. И. Кугутина. Курск: Курская областная научная библиотека им. Н. Н. Асеева, 2012. C. 19.
14. Ramachandraiah K., Han Sung Gu, Chin Koo Bok. Nanotechnology in Meat Processing and Packaging: Potential Applications — A Review. Asian-Australasian Journal of Animal Sciences (AJAS). 2015. Vol. 28. P. 290–302. DOI: https://doi.org/10.5713/ajas.14.0607.
15. Будкевич Р. О., Евдокимов И. А. Безопасность использования наноразмерных частиц. Молочная промышленность. 2010. № 1. С. 46-49.
16. Safety aspects of nanotechnology applications in food packaging / А. Dimitrijevica [et al.]. Procedia Food Science. 2015. Vol. 5. Р. 57-60. DOI: 10.1016/j.profoo.2015.09.015.
17. Colloidal silver solutions with antimicrobial properties / А. Petica [et al.]. Materials science and engineering. 2008. Vol. 152. P. 22-27. DOI: 10.1016/j.mseb.2008.06.021.
18. Raghupathi K. R., Koodali R. T, Manna A. C. Size-Dependent Bacterial Growth Inhibition and Mechanism of Antibacterial Activity of Zinc Oxide Nanoparticles. Langmuir. 2011. Vol. 27 (7). P. 4020–4028. DOI: 10.1021/la104825u.
19. Brayner R. Toxicological Impact Studies Based on Escherichia coli Bacteria in Ultrafine ZnO Nanoparticles Colloidal Medium. Nano Lett. 2006. Vol. 6, № 4. P. 866–870.
20. Изучение антибактериального действия наночастиц меди и железа на клинические штаммы Staphylococcus aureus / И. В. Бабушкина и др. Саратовский научно-медицинский журнал. 2010. Т. 6. № 1. С. 11–14.
21. Geiser M., Kreyling W. Deposition and biokinetics of inhaled nanoparticles. Part FibreToxicol. 2010. Vol. 7, № 1. Р. 2. DOI: 10.1186/1743-8977-7-2.
22. Вплив наночастинок металів на зброджування пивного сусла / Д. В. Карпенко та ін. Пиво і напої. 2012. №. 1. С. 16-17.
23. Ульберг З., Грузина Т., Карпов О. Нанотехнології в медицині: роль колоїднохімічних процесів. Вісник національної академії наук України. 2008. № 8. С. 28-41.
24. Наноматериалы. Нанотехнологии. Наносистемная техника: мировые достижения за 2005 год / под ред. П. П. Мальцева. Москва: Техносфера, 2006. 149 c.
25. Quality changes during ripening of plums (Prunus domestica L.) / V. Usenika [et al.]. Food Chemistry. 2008. Vol. 111, № 4. P. 830–836. DOI: 10.1016/j.foodchem.2008.04.057.
26. García-Mariño N. F., de la Torre Matilla A. J. Organic Acids and Soluble Sugars in Edible and Nonedible Parts of Damson Plum (Prunus domestica L. subsp. insititia cv. Syriaca) Fruits During Development and Ripening. Food Science and Technology International. 2008. Vol. 14, № 2. Р. 187-193. DOI: 10.1177/1082013208092150.
Published
2019-10-19
How to Cite
Сердюк, М., Кюрчева, Л., Андрущенко, М., & Жукова, В. (2019). INFLUENCE OF NANOMETAL SOLUTIONS ON THE INTENSITY OF OXIDATION-REDUCTION PROCESSES IN THE STORAGE OF PEAR FRUIT. Scientific Bulletin of the Tavria State Agrotechnological University, 9(1). Retrieved from https://oj.tsatu.edu.ua/index.php/visnik/article/view/200