CONTROL OF ELECTROMECHANICAL SYSTEMS UNDER CONDITIONS OF PARAMETRIC UNCERTAINTY AND COORDINATES’ INTERRELATION
Abstract
A method of control of electromechanical systems, providing a low sensitivity to changes in the parameters of the control object and its dynamic decomposition is presented. Solution of the above mentioned problems by the classic methods of the automatic control theory, under the under conditions of uncertainties in a mathematical model, is rather complicated because requires additional algorithms of identification, adaptation or compensation. This paper is to propose the method of development of control laws based on an idea of the reversibility of the Lyapunov direct method for the stability analysis, and using the instantaneous value of energy as the predetermined Lyapunov function. The reverse task of dynamics is to identify the con-trol law which would ensure a given quality of control with desired static and dynamic performance of the system. The proposed method is based on an idea of the reversibility of the Lyapunov direct method for the stability analysis. This allows defining control laws which ensure that a closed loop has the predetermined Lyapunov function in form of the instantaneous value of energy. In this case, the specificity of optimization is not obtaining the absolute minimum of the quality functional, as usually used in traditional systems, but rather getting a certain minimal value which would assure a technically allowable dynamic error of the system.
This approach allows practical development of the controllers of the electro-mechanical system which would ensure a given quality of control and adequately simple practical realization under conditions of variation of the parameters of the controlled object and the uncertainties in a mathematical model. Produced regulators have non-traditional structure and do not contain parameters of control object, unlike traditional regulators. This will ensure effective operation with a lesser sensitivity to variations of the motor’s parameters, as well as the simplicity of realization of control system. Results of experimental researches confirmed the effectiveness of proposed control laws and show their advantages compared to traditional laws.
References
2. Mostafa O., Oz H. Chatter elimination in variable structure control maneuvering of flexible spacecraft. The Journal of the Astronautically Sciences. 1989. Vol. 37, N 4. Р. 529-550.
3. Мееров М. В. Синтез структур систем автоматического управления высокой точности. Москва: Наука, 1967. 354 с.
4. Потапенко Е. М. Сравнительная оценка робастных систем управления с различными типами наблюдателей. Изв. РАН. Теория и системы управления. 1995. № 1. С. 109-117.
5. Льюнг Л. Идентификация систем. Теория для пользователя. Москва: Наука, 1991. 432 с.
6. Мирошник И. В., Никифоров В. О., Фрадков А. Л. Нелинейное и адаптивное управление сложными динамическими системами. СанктПетербург: Наука, 2000. 549 с.
7. Крутько П. Д. Робастно устойчивые структуры управляемых систем высокой динамической точности. Алгоритмы и динамика управления движением модельных объектов. Изв. РАН. ТиСУ. 2005. № 2. С. 120-140.
8. Островерхов Н. Я., Бурик Н. П. Управление координатами электроприводов на основании концепции обратных задач динамики при минимизации локальных функционалов мгновенных значений энергий. Електротехніка та електроенергетика. 2011. № 1. С. 41-49.