ЗАКОНИ КЕРУВАННЯ ЕЛЕКТРОМЕХАНІЧНИМИ СИСТЕМАМИ В УМОВАХ ПАРАМЕТРИЧНИХ ТА КООРДИНАТНИХ ЗБУРЕНЬ
Анотація
Анотація – в статті наведено метод керування електромеханічними системами, що забезпечує слабку чутливість до змін параметрів об'єкта керування та його динамічну декомпозицію. Вирішення задачі керування об’єктом в умовах параметричних та координатних збурень класичними методами теорії автоматичного керування вимагає додаткових алгоритмів ідентифікації, адаптації або компенсації. У статті запропоновано метод розробки законів керування на основі зворотності прямого методу Ляпунова для аналізу стійкості. Це дозволяє визначати закони керування, при яких замкнутий контур має задану функцію Ляпунова у вигляді миттєвого значення енергії. Задачею зворотної задачі динаміки в поєднанні з мінімізацією миттєвого значення енергії є визначення закону керування, який забезпечує наперед задану якість керування з необхідними статичними та динамічними характеристиками системи. При цьому особливість оптимізації полягає не в отриманні абсолютного мінімуму функціоналу якості, як це зазвичай використовується в класичних системах, а отримання певної мінімальної величини, яка забезпечить технічно допустиму динамічну похибку системи. Такий підхід дозволяє практично розробити закони керування електромеханічними системами, які забезпечують задану якість керування та просту практичну реалізацію в умовах зміни параметрів об'єкта керування та невизначеностей у математичній моделі. Отримані регулятори мають нетипову структуру і не містять параметрів об'єкта керування, на відміну від традиційних регуляторів. Це забезпечує ефективну роботу системи з меншою чутливістю до змін параметрів об’єкту, а також простоту реалізації системи керування. Результати досліджень підтвердили ефективність запропонованих законів регулювання і показали їх переваги в порівнянні з класичними законами.
Посилання
2. Mostafa O., Oz H. Chatter elimination in variable structure control maneuvering of flexible spacecraft. The Journal of the Astronautically Sciences. 1989. Vol. 37, N 4. Р. 529-550.
3. Мееров М. В. Синтез структур систем автоматического управления высокой точности. Москва: Наука, 1967. 354 с.
4. Потапенко Е. М. Сравнительная оценка робастных систем управления с различными типами наблюдателей. Изв. РАН. Теория и системы управления. 1995. № 1. С. 109-117.
5. Льюнг Л. Идентификация систем. Теория для пользователя. Москва: Наука, 1991. 432 с.
6. Мирошник И. В., Никифоров В. О., Фрадков А. Л. Нелинейное и адаптивное управление сложными динамическими системами. СанктПетербург: Наука, 2000. 549 с.
7. Крутько П. Д. Робастно устойчивые структуры управляемых систем высокой динамической точности. Алгоритмы и динамика управления движением модельных объектов. Изв. РАН. ТиСУ. 2005. № 2. С. 120-140.
8. Островерхов Н. Я., Бурик Н. П. Управление координатами электроприводов на основании концепции обратных задач динамики при минимизации локальных функционалов мгновенных значений энергий. Електротехніка та електроенергетика. 2011. № 1. С. 41-49.