СУЧАСНИЙ СТАН РОЗВИТКУ ЕЛЕКТРОТЕХНОЛОГІЙ В РОСЛИННИЦТВІ УКРАЇНИ
Анотація
Анотація В статті проведено аналіз стану питання розвитку аграрного виробництва України різної сільськогосподарської продукції, в т.ч. і в рослинництві, його суттєвого відставання від розвинених країн в напрямі забезпечення підвищення енерго- та русурсоефективності технологічних процесів виробництва, зберігання та переробки продукції. Розкрито необхідність реалізації заміни традиційних технологій, які досягли своїх критичних значень і фактично вичерпали свої можливості. Встановлено необхідність створення нових високоефективних технологій та обладнання, які спрямовані на біологічну стимуляцію життєдіяльності сільськогосподарської продукції. Одним із таких методів може бути застосування методів електротехнологій, які можуть дати суттєвий економічний зиск від їх впровадження у виробництво.
Посилання
2. Radko I., Nalyvaiko V., Okushko O. Electromagnetic energy as an impact factor on life processes of a biological object of a plant origin. Korean Journal of Food & Health Convergence. 2019. Vol 6(1). Р. 1-8. http://dx.doi.org/10.13106/kjfhc.2020.vol6.no1.1.
3. Karpov V. N. Energy saving in optical electrotechnologies of agro-industrial complex. Applied theory and private methods. 2009. 100 р.
4. Bogatina N., Shekina N. Effect of electric fields on plants. Biologiia, himiia. 2011. Vol. 24(63). Р. 10–17.
5. Фізико-технологічні та електрофізичні властивості сільськогосподарських продуктів і матеріалів: навч. посібник / Г. Б. Іноземцев, Л. С. Червінський, О. М. Берека, О. В. Окушко; за ред. Г. Б. Іноземцева. Київ: Аграр Медіа Груп, 2010. 180 с.
6. Barba F. J., Parniakov O., Pereira S., Wiktor A., Grimi N., Boussetta N., Saraiva J., Raso J., Martin-Belloso O., Witrowa-Rajchert D., Lebovka N., Vorobiev E. Current applications and new opportunities for the use of pulsed electric fields in food science and industry. Food Research International. 2015. Vol. 77. Р. 773–798.
7. Nikiforova L., Kizim I., Bogatyrev Y. Electrotechnological system for monitoring effects of optical range electromagnetic fields on vegetation bioobject. Technical Electrodynamics. 2014.
8. Сhervinsky L., Radko I., Nalyvaiko V., Okushko, O. (2022) The Results of Experimental Studies of the Passage of Light Energy under the Skin of Animals Along Individual Hairs. Machinery & Energetics, Scientific Journal. 2022. Vol. 13, Is. 2, 102–108.
9. Hozayn M., Amal A.E.-M., Abdel-Rahman H. (2015). Effect of magnetic field on germination, seedling growth and cytogenetic of onion (Allium cepa L.). Journal of Agriculture and Research. 2015. Vol. 10. Р. 849–857.
10. Іноземцев Г. Б., Берека О. М., Окушко О. В. Електротехнології обробки сільськогосподарської продукції. Київ: ТОВ “АграрМедіаГруп, 2013. 293 с.
11. Іноземцев Г. Б., Окушко О. В. Технологічні аспекти зберігання продукції рослинництва із застосуванням аероіонізаціїі. Праці Таврійської державної агротехнічної академії. 2005. Вип. 31. С. 3–7.
12. Iderawumi A. M., Friday C. E. Effects of magnetic field on pretreament of seedlings and germination. Journal of Agriculture and Research. 2020. Vol. 6. Р. 1–8.
13. Nyakane N. E., Markus E. D., Sedibe M. M. (2019). The effects of magnetic fields on plants growth: A comprehensive review. International Journal of Food Engineering. 2019. Vol. 5. Р. 79–87.
14. De Souza A., Sueiro L., García D., Porras E. Extremely low frequency non-uniform magnetic fields improve tomato seed germination and early seedling growth. Seed Science and Technology. 2020. Vol. 38(1). Р. 61–72. http://dx.doi.org/10.15258/sst.2010.38.1.06.
15. Kozyrskyi V., Savchenko V., Sinyavsky O. The processing of irrigation water and artificial fertilizer solutions in magnetic field. International Journal of Energy Optimization and Engineering. 2020. Vol. 9. Р. 74–83.
16. Pietruszewsk, S., Martínez E. (2015). Magnetic field as a method of improving the quality of sowing material: A review. International Agrophysics. 2015. Vol. 29(3). Р. 377–389. http://dx.doi.org/10.1515/intag-2015-0044.
17. Іноземцев Г. Б., Окушко О. В. Енергозберігаюча технологія стимуляції росту рослин. Праці Таврійської державної агротехнічної академії. 2009. Вип. 9, т. 1. С. 184–189.
18. Yehorova O. Iu. Doslidzhennia mozhlyvosti vplyvu kuta padinnia vyprominennia na intensyvnist vyhonky roslyny v zakrytomu hrunti [Investigation of the possibility of influx of waterfall in comparison with the intensity of forcing of plants in closed soil]. Visnyk KhNTUSH im. P. Vasylenka. 2016. Vol 176. Р. 78–79.
19. Zablodskiy M., Savchenko V., Synyavskiy O., Pliuhin V. Interactions between Magnetic Field and Biological Objects of Plant Origin. IEEE 38th International Conference on Electronics and Nanotechnology: International Conference on Electronics and Nanotechnology, ELNANO 2018 Kyiv, 24 April 2018. 2018. Р. 261–266. http://dx.doi.org/10.1109/ELNANO.2018.8477484.
20. Chervinskyi L. S. Rozrobka uzahalniuiuchoi matematychnoi modeli protsesu vyroshchuvannia ovochiv u teplytsi dlia vyrishennia pytannia optymizatsii protsesu [Development of a basic mathematical model of the process of growing vegetables in a greenhouse for high
nutritional optimization of the process]. Visnyk KhNTUSH im. Petra Vasylenka. 2017. Vol 186. Р. 98–100
21. Kotyk M., Andriichuk V., Herts A. Osvitliuvalni ustanovky dlia svitlokultury roslyn z dodatkovym impulsnym oprominiuvanniam [Illumination installations for light culture of plants with additional pulse propagation]. Visnyk TNTU. 2018. Vol. 4(92). Р. 91–96.