BALANCING THE LOAD SCHEDULE OF RURAL COMMUNAL CONSUMERS WITH THE USE OF SOLAR PANELS AND ENERGY STORAGE
Abstract
The paper analyzes changes in the daily schedule of electrical loads of the 10/0.4 kVA transformer substation line with a capacity of 100 kVA in the Kharkiv region, which supplies rural residential buildings in winter and summer.To smooth out load peaks and optimize energy consumption, the efficiency of energy storage devices was calculated to determine the possibilities of their use. An analysis of daily energy consumption in twenty private houses was carried out, including the calculation and assessment of the energy required to ensure the operation of household electrical appliances for 24 hours. Based on the data obtained, daily load graphs were built, reflecting changes in energy consumption during the day. A method for balancing load schedules using a solar panel and energy storage is proposed. This method allows you to increase the efficiency of such electrical networks.The daily change in electrical loads of the 10/0.4 kV transformer substation line to provide electricity to 20 houses using solar generation and batteries to equalize the load schedule in the summer season showed the efficiency of using electrical energy storage devices, namely in the morning and in the evening, during peak electrical loads, it was possible to reduce their level by almost 40%.Daily shifts in the electrical line of the 10/0.4 kV transformer substation to power 20 houses using solar generation and batteries in winter showed insufficient electricity production by solar panels to reduce uneven schedules. The maximum electrical load in the winter season during the studies was 52.4 kW, and the average load in the winter season exceeded the average load in the summer season by 26.2%. In the winter season, it is recommended to charge batteries from the mains during low electrical loads to reduce the unevenness of the electrical load schedule.
References
2. Kabir E., Kumar P., Kumar S., Adelodun A., Kim Ki-Hyun. Solar energy: Potential and future prospect. Renewable and Sustainable Energy Reviews. 2018. Vol. 82 (1). P. 894–900. https://doi.org/10.1016/j.rser.2018.09.094.
3. Галько С. В., Жарков В. Я., Жарков А. В. Технології та засоби перетворення відновлюваних джерел енергії для приватних домогосподарств : монографія. Мелітополь : Люкс. 2019. 215 с.
4. Halko S., Halko K. Research of electrical and physical characteristics of the solar panel on the basis of cogeneration photoelectric modules. Integración de las ciencias fundamentals y aplicadas en el paradigm de la sociedad post-industrial: Colección de documentos cientificos “ΛΌΓΟΣ” con actas de la Conferencia Internacional Cientifica y Prάctica, 24 de abril de 2020. Barcelona, España: Plataforma Europea de la Ciencia. 2020. Vol. 2. P. 39–44.
5. Оцінка збитків енергетичного сектору України – VI (станом на січня 2025 року). URL: https://cutt.us/clzZG (дата звернення 28.01.2025).
6. Про затвердження нормативно-правових актів, що регулюють діяльність гарантованого покупця та придбання електричної енергії за «зеленим» тарифом та за аукціонною ціною. Документ v0641874-19, чинний, чинна редакція – редакція від 28.04.2023, підстава – v0758874-23. URL: https://cutt.us/Hh6XX (дата звернення 28.01.2025).
7. Komada P., Trunova I., Miroshnyk O., Savchenko O., Shchur T. The incentive scheme for maintaining or improving power supply quality. Przeglad Elektrotechniczny. 2019. Vol. 95 (5). P. 79–82. https://doi. org/10.15199/48.2019.05.20.
8. Chub A., Vinnikov D., Stepenko S., Liivik E., Blaabjerg F. Photovoltaic Energy Yield Improvement in Two- Stage Solar Microinverters. Energies. 2019. Vol. 12. P. 3774. https://doi.org/10.3390/en12193774.
9. Lezhniuk P., Komar V., Belik M., Rubanenko O., Smaglo I. Analysis of technical conditions influencing the operation of PV power stations cooperating with controlled power grids. 2022 IEEE 4th International Conference on Modern Electrical and Energy System (MEES), Kremenchuk, Ukraine. 2022. 1–6, https://doi.org/10.1109/ MEES58014.2022.10005686.
10. Галько С.В. Експериментальне дослідження і визначення параметрів когенераційного фотоелектрич- ного модуля для гібридних сонячних електростанцій. Традиційні та інноваційні підходи до наукових дослі- джень: матеріали Міжнар. наук. конф., 10 квіт. 2020 р. Луцьк: МЦНД. 2020. Т. 1. C. 83–90. https://doi. org/10.36074/10.04.2020.v1.10.
11. Ciriminna R., Meneguzzo F., Pecoraino M., Pagliaro M. Rethinking solar energy education on the dawn of the solar economy. Renewable and Sustainable Energy Reviews. 2016. Vol. 63. P. 13–18. https://doi.org/10.1016/j. rser.2016.05.008.
12. Миколюк О., Желавська І., Ляховець В. Формування ключових векторів забезпечення енергетич- ної безпеки крізь призму інноваційного розвитку альтернативних джерел енергії. Вісник Хмельницького національного університету. Економічні науки. 2018. Вип. 3 (1). С. 199–204. http://elar.khnu.km.ua/jspui/ handle/123456789/6698.
13. Barath J.N., Soundarrajan A., Stepenko S., Husev O., Vinnikov D., Nguyen M.-K. Topological Review of Quasi-Switched Boost Inverters. Electronics. 2021. Vol. 10. P. 1485. https://doi.org/10.3390/electronics10121485.
14. Shevchenko S. Finding Software Ways to Reduce the Error for the Solar Power Plant Simulation Model. Proceedings – 16th International Conference on Advanced Trends in Radioelectronics, Telecommunications and Computer Engineering, TCSET. 2022. P. 277–280. https://doi.org/10.1109/TCSET55632.2022.9766844.
15. Галько С. В. Використання когенераційних фотоелектричних модулів для зарядки акумуляторів елек- тромобілів. Праці ТДАТУ. Технічні науки. Мелітополь : ТДАТУ. 2019. Вип. 19. Т. 3. C. 130–141. https://doi. org/10.31388/2078-0877-19-3-130-141.
16. Miroshnyk O., Moroz O., Shchur T., Chepizhnyi A., Qawaqzeh M., Kocira S. Investigation of Smart Grid Operation Modes with Electrical Energy Storage System. Energies. 2023. Vol. 16 (6). P. 2638. https://doi.org/10.3390/ en16062638.
17. Mahto T., Mukherjee V., Energy storage systems for mitigating the variability of isolated hybrid power system. Renewable and Sustainable Energy Reviews. 2015. Vol. 51. P. 1564–1577. https://doi.org/10.1016/j. rser.2015.07.012.
18. Gundebommu S.L., Rubanenko O., Cosovic M. Determination of Normative Value Power Losses in Distribution power grids with Renewable Energy Sources using Criterion Method. 2020 19th International Symposium INFOTEH-JAHORINA (INFOTEH). East Sarajevo, Bosnia and Herzegovina. 2020. P. 1–6. https://doi. org/10.1109/10.1109/INFOTEH48170.2020.9066302.
19. Savchenko O., Miroshnyk O., Moroz O., Trunova I., Sereda A., Dudnikov S., Kozlovskyi O., Buinyi R., Halko S. Improving the Efficiency of Solar Power Plants Based on Forecasting the Intensity of Solar Radiation Using Artificial Neural Networks. 2021 IEEE 2nd KhPI Week on Advanced Technology (KhPIWeek), Kharkiv, Ukraine. 2021. P. 137–140, https://doi.org/10.1109/KhPIWeek53812.2021.9570009.
20. Halko S., Halko K., Suprun O., Qawaqzeh M., Miroshnyk O. Mathematical modelling of cogeneration photoelectric module parameters for hybrid solar charging power stations of electric vehicles. 2022 IEEE 3rd KhPI Week on Advanced Technology (KhPIWeek). Kharkiv, Ukraine. 2022. P. 1–6. https://doi.org/10.1109/ KhPIWeek57572.2022.9916397.
21. Belik M., Rubanenko O. PV system for emergency power supply of cattle-farm in war conditions. 2023 IEEE 64th International Scientific Conference on Power and Electrical Engineering of Riga Technical University (RTUCON), Riga, Latvia. 2023. P. 1–7. https://doi.org/10.1109/10.1109/RTUCON60080.2023.10412928.
22. Belik M., Rubanenko O., Rubanenko O. Optimization of PV-system design for household. 2023 IEEE 4th KhPI Week on Advanced Technology (KhPIWeek), Kharkiv, Ukraine. 2023. P. 1–6 https://doi.org/10.1109/ KhPIWeek61412.2023.10312893.
23. Molderink A., Bakker V., Bosman M.G.C., Hurink J.L., Smit G.J.M. Management and Control of Domestic Smart Grid Technology. In IEEE Transactions on Smart Grid, Sept. 2010. Vol. 1 (2). P. 109–119. https://doi. org/10.1109/TSG.2010.2055904.
24. Alrefo I.F., Matsulevych O., Vershkov O., Halko S., Suprun O., Miroshnyk O. Designing the working surfaces of rotary planetary mechanisms. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu. 2023. Vol. 4. P. 82–88. https://doi.org/10.33271/nvngu/2023-4/082.
25. Sansaniwal S., Sharma V., Mathur J. Energy analyses of various typical solar energy applications: A comprehensive review. Renewable and Sustainable Energy Reviews. 2018. Vol. 82 (1). P. 1576–1600. https://doi. org/10.1016/j.rser.2018.07.003.
26. Viacheslav B., Roman B., Andrij S., Volodymyr T. Integration of New Single-Phase-to-Ground Faults Detection Devices into Existing SmartGrid Systems. 2019 IEEE 6th International Conference on Energy Smart Systems (ESS), Kyiv, Ukraine. 2019. P. 84–87. https://doi.org/10.1109/ESS.2019.8764237.
27. Al Issa H.A., Khasawneh A., Sotnik O., Miroshnyk O., Sotnik O., Tymchuk S. Influence of the Value of the Power Factor of Electricity Consumers in the Residential Sector of the Village on the Technical and Economic Indicators of Low-Voltage Electrical Networks. 2021 IEEE International Conference on Modern Electrical and Energy Systems (MEES). 2021. P. 1–4. https://doi.org/10.1109/MEES52427.2021.9598687.
28. Dwornicka R., Pietraszek J. The outline of the expert system for the design of experiment. Production Engineering. 2018. Vol. 20. P. 43–48. https://doi.org/10.30657/pea.2018.20.09.
29. Перевірочний розрахунок силового трансформатора : метод. вказівки до виконання розрахункових робіт з дисц. «Основи технічної експлуатації енергетичного обладнання систем електропостачання» для сту- дентів першого (бакалаврського) рівня вищої освіти денної та заочн. форм навч., спец.: 141 Електроенерге- тика, електротехніка та електромеханіка / Державн. біотехнолог. ун.-т; упоряд.: В. Г. Пазій, І. М. Трунова. Харків : ДБТУ. 2022. 35 с.
30. Zamulko A., Chernetska Y. Benchmarking method for anallyzing the efficiency of the electricity distribution system operators. Power engineering: economics, technique, ecology. 2018. Vol. 3. P. 35–44. https://doi.org/10.205 35/1813-5420.3.2018.164264.
31. Al-Issa H.A., Qawaqzeh M., Kurashkin S., Halko S., Kvitka S., Vovk O., Miroshnyk O. Monitoring of power transformers using thermal model and permission time of overload. International Journal of Electrical and Computer Engineering (IJECE). 2022. Vol. 12 (3). P. 2323–2334. https://doi.org/10.11591/ijece.v12i3.pp2323-2334.
32. Dwarakesh K., Jeyasekar C. Design and Implementation of Low-cost Remote Monitoring of Distribution Transformer with Consumer wise Energy recording, Load control & Power theft detection using Internet of Things. IJAREE, July 2018. Vol. 1 (1). P. 71–79.
33. Krasnozhon A.V., Buinyi R.O., Pentegov I.V. Calculation of active power losses in the grounding wire of overhead power lines. Technical Electrodynamics. 2016. Vol. 4. P. 23–25. https://doi.org/10.15407/ techned2016.04.023.
34. Kennedy O., Elizabeth A., Robert O., John S. Monitoring and Fault Detection System for Power Transmission Using GSM Technology. World Congress in Computer Science Computer Engineering & Applied Computing, July 2017. P. 93–97.
35. Matukhno V., Baidak Yu., Tomlein P. Thermal subsystem of voltage distribution transformer. Refrigeration Engineering and Technology. 2016. Vol. 52 (6). P. 58–64.
36. Методичні вказівки з обліку та аналізу в енергосистемах технічного стану розподільних мереж напругою 0,38–20 кВ з повітряними лініями електропередачі: СОУ-Н МПЕ 40.1.20.576:2005. Київ : ГРІФРЕ, 2005. 67 с.
37. Krynke M., Klimecka-Tatar D. The use of Computer Simulation Techniques in Production Management. Materials Research Proceedings. 2022. Vol. 24. P. 126–133. https://doi.org/10.21741/9781644902059-19.
38. Dali M., Belhadj J., Roboam X. Hybrid solar–wind system with battery storage operating in grid-connected and standalone mode: control and energy management – experimental investigation. Energy. 2010. Vol. 35. Р. 2587–2595. https://doi.org/10.1016/j.energy.2010.03.005.