CALCULATION METHOD OF SPECIFIC ELECTRIC CONDUCTIVITY OF AGROBIOLOGICAL SOIL ENVIRONMENT STATIONARY CONTACT METHOD OF WORKING ELECTRODES INFORMATION-TECHNICAL LOCAL OPERATIONAL SYSTEMS MONITORING
Abstract
Modern agriculture involves the implementation of a particular technological operation, according to the appropriate map-task, which is developed pre-based on diverse information. Knowledge of a certain structure of soil cover variability, obtained using information and technical systems of local operational monitoring of agrobiological state of agricultural lands, allows us to adopt effective operational decisions for efficient management of agrobiological potential of agricultural lands.
Obviously, under such conditions, there is a need for fundamentally new approaches to agricultural production, which is to ensure the proper quality of technological operations. The quality of the implementation of technological operations is an integral indicator of the efficiency of production of agricultural products within the agrobiological field. The necessary quality of implementation of the basic technological processes in plant growing is provided by the integrated information and technical systems of operational monitoring of the agrobiological state of agricultural lands. This opens new prospects for organic farming using such "smart" agricultural machines.
In connection with this, the task is to obtain reliable data on the agrobiological state of the soil environment by reducing the error in determining the magnitude of the electrical conductive properties of the soil, providing individual stabilization of the working electrodes and the mechanism of lifting / lowering the working electrodes, copying inequalities of the soil environment, reducing the intensity of the destruction of the soil structure, self-cleaning of the working contact of the electrode and ensuring the stability of the electrical contact of the electrode with the soil, by instrument design perfection. The task is achieved by using the information and technical system of operational monitoring of the soil environment of the structure to determine the conductive characteristics of the soil environment.
The purpose of this study is to determine the critical loading at the loss of stability by thin-walled working electrodes made in the form of working electrodes of various shapes (thin-walled solid, three-spit and four-spindle discs with different thickness of the rim). Information and technical system of local-operational monitoring of agrobiological state of soil environment of different configurations with one-side compression.
References
2. Броварець О. Від безплужного до глобального розумного землеробства // Техніка і технології АПК. 2016. № 10. С. 28-30.
3. Броварець О. О. Інформаційно-технічна система оперативного моніторингу стану ґрунтового середовища конструкції Олександра Броварця // Вісник Львівського національного аграрного університету. Сер. Агроінженерні дослідження. 2017. № 21. С. 9-29.
4. Вадюнина А. Ф. К оценке электропроводности как метода определения влажности почв // Почвоведение. 1937. № 3. С. 391-404.
5. Воробьев Н. И. К вопросу кондуктометрического определения засоленности почв и грунтов // Почвоведение. 1955. № 4. С. 103.
6. ГОСТ 26423-85. Почвы. Методы определения удельной электрической проводимости, рН и плотного остатка водной вытяжки. [Дата введения 1986-01-01]. Москва, 2011. 7 с.
7. Гуков Я. С., Линник Н. К., Мироненко В. Г. Автоматизированная система локально-дозированного внесения удобрений, мелиорантов и средств защиты растений // Труды 2-й МНПК по проблемам дифференциального применения удобрений в системе координатного земледелия. Рязань, 2001. С. 48-50.
8. Копикова Л. П. Опыт применения методов электропроводности для составления детальных почвенномелиоративных карт // Бюллетень ВИУА. 1979. № 43. С. 21-23.
9. Масло І. П., Мироненко В. Г. Автоматизована система локально-дозованого внесення добрив і хімічних засобів захисту рослин // Розробки-виробництву. Київ: Аграрна наука, 1999. С. 348-349.
10. Медведев. В. В. Неоднородность почв и точное земледелие. В 2 ч. Ч. І. Введение в проблему. Харьков, 2007. 296 с.
11. Ормаджи К. С. Контроль качества полевых работ. Москва: Росагропромиздат, 1991. 191 с.
12. Сучасні тенденції розвитку конструкцій сільськогосподарської техніки / за ред. В. І. Кравчука, М. І. Грицишина, С. М. Коваля. Київ: Аграрна наука, 2004. 398 с.
13. Brovarets O., Chovnyuk Y. Modeling and analysis of efficient electromagnetic parameters of capillary system of electrical conductivity of agricultural soils i: method of analysis of non-stationary electromagnetic fields in dispersive and controlled environments // MOTROL. 2018. Vol. 19, № 4. Р. 13-18.
14. Brovarets O., Chovnyuk Y. Technical – economic models of business management in the processes of agricultural production // ECONTECHMOD. An international quarterly journal. 2017. Vol. 6, № 3. Р. 61-70.
15. Brovarets O., Chovnyuk Y. Chovnyuk. Integrated systems of management for the performance of technological processes in agricultural production which depend on the initial and final moments of their operation time // Teka. 2017. Vol. 17, № 2. Р. 79-90.
16. Brovarets О. Organizational and Technological Background of Project Configuration Management for Freighting // Teka. 2017. Vol. 17, № 3. Р. 49-53.
17. Hertz A. C., Hibbard D. C. J. A Preliminary Assessment of the Economics of Variable Rate Technology for Applying Phosphorus and Potassium in Corn Production // Farm Economics. 1993. Is. 14. P. 218-231.
18. Wilcox G. G. Determination of electrical conductivity of soil solutions // Soil Science. 1947. Vol. 63. 107 р.
19. Ewart G. Y., Baver L. D. Salinity Effects on soil moisture electrical resistance relstionships // Soil Scien. Soc. Amer. 1950. Vоl. 15. Р. 56-63.
20. Rhoades J. D., Schifgaarde J. Van. An electrical conductivity probe for determining soil salinity // Soil Scien. Soc. Amer. J. 1976. № 5. Р. 647-651.