METHOD FOR CALCULATING DEVICE PARAMETERS BASED ON VENTURI INJECTOR FOR FRUIT PLANT FERTIGATION
Abstract
Summary. Fruit trees, growing for many years in one place and distinguished by high productivity, absorb a large amount of nutrients from the soil. Numerous experiments of scientific institutions and the practice of advanced farms have proven the high efficiency of the optimal fertilizer application system in gardens. Significant areas of modern orchards are equipped with drip irrigation systems, in which mineral fertilizers are applied locally with irrigation water (fertigation). Fertigation allows you to constantly maintain optimal soil moisture and supply plants with small doses of a balanced amount of nutrients during the growing season. One of the most used devices for applying fertilizers with irrigation water is the Venturi injector. This system is easy to maintain and relatively inexpensive, providing the supply of dissolved concentrated fertilizers with great precision into the irrigation pipeline. Currently, there is no general analytical theory that allows the calculation of jet devices (pumps, hydraulic elevators, ejectors, injectors) without using empirical formulas and quantities. Methods based on the following theories are proposed for the calculation of jet devices: theory of mixing of two flows; theories of the propagation of a jet in a mass of liquid that is at rest or moving; mechanics of bodies of variable mass. To calculate the jet device (pump, ejector, injector), it is necessary to determine the following hydraulic and geometric parameters: 1) consumption of working and suction fluid 2) specific energy (total pressure) of working, suction and mixed fluids; 3) cross-sectional area of the working nozzle or its diameter, cross-sectional area of the mixing chamber or its diameter. Thus, in order to calculate a jet pump, it is necessary to determine seven unknown quantities of liquids, that is, seven equations must be compiled. To solve the given problem, it is desirable to have a simplified method of calculation that gives results with sufficient accuracy for practical use. The article presents the results of the development of a simplified method of calculating the fertigation device, which uses a Venturi injector as a pump for feeding the mother solution of fertilizers into the irrigation water when irrigating fruit plantations. The characteristics of the injector are constructed in relative form for the case when the area of the entrance to the displacement chamber of the injector exceeds twice the area of the working nozzle. It was found that in such a configuration, the maximum value of the injector efficiency is reached at a relative flow q=0.6. At the same time, the relative pressure will be h=0.37, and the flow rate of the working nozzle р.с= 0.21The results of calculations of water flow through the injector and injection volume depending on the geometric parameters of the injector and changes in water pressure are given.
References
2. Куян В. Г. Плодівництво. Житомир: ЖНАЕУ, 2009. 480 с.
3. Кіщак О. А. Основи промислової культури черешні в Лісостепу України: монографія. Київ: Аграр. наука, 2017. 240 с.
4. Караєв О. Г., Одинцова В. А., Сушко С. Л. Формирование базы данных для автоматизированного управления физиологическим состоянием плодовых деревьев мелкодисперсным дождеванием. Motrol. Commision of Motorization and Energetics in Agriculture. 2016. Vol.18(1). P. 55–61.
5. Калачев В. В. Струйные насосы. Теория, расчет и проектирование. Mосква: Филинъ: “Омега-Л”, 2017. 418 с.
6. Лямаев Б. Ф. Гидроструйные насосы и установки. Ленинград: Машиностроение, 1988. 278 с.
7. Сазонов Ю. А., Деговцов А. В., Казакова Е. С., Клименко К. И. Многопоточный эжектор и новое направление для развития струйной техники. Территория НЕФТЕГАЗ. 2012. № 4. С. 75-77.
8. Сазонов Ю. А. Основы расчета и конструирования насосно-эжекторных установок. Москва: ГУП Изд-во «Нефть и газ» РГУ нефти и газа имени И.М. Губкина, 2012. 300 с.
9. Лямаев Б.Ф. Гидроструйные насосы и установки. Ленинград: Машиностроение, 1988. 256 с.
10. Альтшуль А. Д., Киселёв П. Г. Гидравлика и аэродинамика (основы механики жидкости). Москва: Стройиздат, 1965. 274 с.
11. Соколов Е. Я., Зингер Н. М. Струйные аппараты. Москва: Энергоатомиздат, 1989. 352 с.
12. Шатковський А. П., Журавльов О. В. Наукові основи технологій краплинного зрошення сільськогосподарських культур. Херсон: ВД Гельветика, 2021. 405 с.
13. Фоменко Т. Г., Попова В. П. Результаты мониторинга физико-химических свойств чернозема обыкновенного в плодовых насаждениях при капельном орошении. Научные труды ГНУ СКЗНИИСиВ. 2013. Т. 3. С. 42–49.
14. Фоменко Т. Г., Попова В. П. Формирование контуров увлажнения почвы при локальных малообъемных способах орошения плодовых насаждений. Мелиорация и водное хозяйство. 2016. № 4. С. 22–27.
15. Odyntsova V., Sushko S., Bondarenko L., Scherbakova N. Application of phenoclimatographic models in stone fruits protecting from spring frosts. Modern Development Paths of Agricultural Production. Trends and Innovations. 2019. Р. 267–280.
16. Aggelopoulou K. D., Pateras D., Fountas S., Gemtos T. A. Soil spatial variability and site-specific fertilization maps in an apple orchard. Precision Agriculture. 2011. Vol. 12 (1). P. 118–129.
17. Küçükyumuka C., Kaçal E., Ertek A., Öztürk G. at el. Pomological and vegetative changes during transition from flood irrigation to drip irrigation: Starkrimson Delicious apple variety. Scientia Horticulturae. 2012. T. 136. P. 17–23.
18. Fernández J. E., Cuevas M. V. Irrigation scheduling from stem diameter variations: A review. Agricultural and Forest Meteorology. 2011. Vol. 150. P. 135–151.
19. Friedman S. P., Naftaliev B. A survey of the aeration status of drip-irrigated orchards. Agricultural Water Management. 2012. Vol. 115. P. 132–147.
20. Kafkafi U., Tarchitzky J. Fertigation: A Tool for Efficient Fertilizer and Water Management. First edition, IFA, Paris, France and IPI, Horgen, Switzerland, 2011. 138 р.
21. Romashchenko M., Shatkowski A., Zhuravlev O. Features of application of the «Penman – Monteith» method for conditions of a drip irrigation of the Steppe of Ukraine (on example of grain corn). Journal of Water and Land Development. 2016. Vol. 31. P. 123–127. https://doi.org/10.1515/jwld-2016-0043.
22. Shatkovskyi A., Romashchenko M., Vasyuta V., Zhuravlov O. at el. Measurement of the cell sap concentration of plant’s leaves for irrigation’s scheduling. Modern Phytomorphology. 2019. Vol. 13. P. 54–57. https://doi.org/10.5281/zenodo.3518881.
23. Shatkovskyi A. P., Romashchenko M. I., Zhuravlov O. V., Vasyuta V. V. at el. Evaluation of the «Penman-Monteith» model for determination of soybeans’ evapotranspiration in irrigated conditions of the Steppe of Ukraine. Modern Phytomorphology. 2020. Vol. 14. P. 115–118. https://doi.org/10.5281/zenodo.4449887.
24. Hassan M. Badr, Wael H. Ahmed. Common Problems in Centrifugal Pumps. Pumping Machinery Theory and Practice. 2014. T. 5. https://doi.org/110.1002/9781118932094.
25. Kajero O. T., Thorpe R. B., Yao Yu., Wong D. S. H., Chen T.. Meta Model-Based Calibration and Sensitivity Studies of Computational Fluid Dynamics Simulation of Jet Pumps. Chemical engineering and technology. 2017. Vol. 4(9). P. 1674–1684. https://doi.org/10.1002/ceat.201600477.