ALGORITHM FOR THE DETERMINATION OF THE UPPER BORDER TRAJECTORY ON THE LEMPORARY-VISIT SURFACE
Abstract
The currently adopted crop processing technologies are based on multiple passes of heavier machine-tractor units. This leads to the fact that there is an increasing dispersion of the upper and lower compaction of soil layers. As a result, areas of wind, water and mechanical erosion are expanded, the effectiveness of fertilizers and crop yields are reduced. Therefore, the current trends [1] of the development of tillage and sowing machines are determined mainly by environmental requirements to protect the soil from excessive man-made loads.
Now on the world market of high-tech industrial products three main trends are clearly observed: increasing the complexity of products, increasing competition in the market and developing cooperation between participants in the product life cycle. The most progressive and promising condition for the improvement of the design process is the creation and implementation of computer-aided design systems with a developed system of geometric design. Such preparation of production allows enterprises to respond quickly to changes in demand, in a short time to produce new types of products, quickly modernize their products, track the product life cycle, and effectively improve quality.
Each technological task in the conditions of an enterprise can have a large number of options, so it is difficult for a specialist to cope with similar amounts of work, and in these conditions the decisive prerequisite for speeding up production is the implementation of a design system algorithm.
The improvement of the technological process of an enterprise is presented on the example of manufacturing a plow-bottom plow surface using an algorithm for constructing a spatial curve, namely the construction of a geodesic line on arbitrary surfaces of the upper limit trajectory of motion.
When designing, modern methods for constructing a plow-bottom surface have been investigated. It is proposed to use the method of constructing the surface of a horizontal cylindroid and the working surface along a contour in the transverse-vertical plane of the projections.
References
2. Лукина З. И. Некоторые вопросы геометрии сетчатых каркасов поверхностей переноса // Труды УДН им. П. Лумумбы. Сер. Математика. Прикладная геометрия. Москва, 1967. Т. 26, вып. 3. С. 58-65.
3. Харит К. А. Прокладывание геодезической линии на сложной поверхности вращения // Материалы II научно-методической конференции по начертательной геометрии и инженерной графике кафедр вузов УзССР. Ташкент, 1968. Вып. 60. С. 81-84.
4. Ковалев С. Н., Харченко А. И. Численный метод построения геодезической линии на регулярной поверхности // Прикладная геометрия и инженерная графика. Киев, 1978. Вып. 26. С. 24-25.
5. Пихтєєва І. В., Брустінов В. М. Дискретний метод найменших квадратів при формуванні кривини моделі // Праці ТДАТУ. Сер. Прикладна геометрія та інженерна графіка. Мелітополь, 2014. Вип. 4, т. 58. С. 107-112.
6. Найдиш А. В., Пихтєєва І. В., Сивова А. К. Формування поверхні леза плуга за допомогою двох напрямних кривих з розрахунком згущення точкового ряду обводу методом Yopt // Сучасні проблеми геометричного моделювання. 2014. Вип. 1. С. 95-102.

