ВИЗНАЧЕННЯ ОПТИМАЛЬНИХ ПАРАМЕТРІВ НАКОПИЧУЮЧИХ ТА ГЕНЕРУЮЧИХ ДЖЕРЕЛ ЕЛЕКТРИЧНОЇ ЕНЕРГІЇ В АВТОНОМНИХ ЛОКАЛЬНИХ ЕЛЕКТРИЧНИХ СИСТЕМАХ

  • С. В. Галько Таврійський державний агротехнологічний університет імені Дмитра Моторного https://orcid.org/0000-0001-7991-0311
  • О. О. Мірошник Державний біотехнологічний університет, м. Харків https://orcid.org/0000-0002-6144-7573
  • М. М. Сивенко Державний біотехнологічний університет, м. Харків
  • M. Z. Qawaqzeh Balqa Applied University, Al Salt, Jordan https://orcid.org/0000-0001-7027-5577
Ключові слова: локальні електромережі, відновлювальна енергетика, накопичувачі електроенергії, генерація, автономні джерела.

Анотація

Анотація. У статті розглянуті шляхи забезпечення безперебійного електропостачання споживачів в умовах стохастичної роботи генераторів на основі відновлюваних джерел енергії і визначені найбільш придатні параметри для зберігання електричної енергії та генеруючого обладнання в автономних локальних електричних системах. Наведено обґрунтування ролі накопичувачів електричної енергії за наявності відновлюваних джерел енергії в автономних локальних електричних системах зі стохастичним режимом роботи. Розглянуто основні положення моделей електричних систем, що використовується. Досліджено залежність параметрів накопичувача енергії залежно від складу генеруючих потужностей. Розглянуто реалізацію задачі визначення параметрів пристроїв накопичення електричної енергії методом цілеспрямованого моделювання. Обґрунтовано результати багатокритеріального вибору потужності та енергоємності накопичувача електричної енергії. Розроблено математичну модель визначення оптимальних параметрів пристроїв накопичення електричної енергії для автономних локальних електричних систем з використанням змішаного цілочисельного програмування з оптимізацією та врахуванням економічних показників. Розглянуто основні положення моделі, що використовується. Досліджено залежності параметрів накопичувачів електричної енергії від складу генерації автономних локальних електричних систем.

Посилання

1. Галько С. В. Експериментальне дослідження і визначення параметрів когенераційного фотоелектричного модуля для гібридних сонячних електростанцій. Традиційні та інноваційні підходи до наукових досліджень: матеріали Міжнар. наук. конф., 10 квіт. 2020 р. Луцьк: МЦНД. 2020. Т. 1. С. 83-90. https://doi.org/10.36074/10.04.2020.v1.10.
2. Галько С. В. Використання когенераційних фотоелектричних модулів для зарядки акумуляторів електромобілів. Праці Таврійського державного агротехнологічного університету. Технічні науки. 2019. Вип. 19, т. 3. С. 130-141. https://doi.org/10.31388/2078-0877-19-3-130-141.
3. Halko S., Halko K. Research of electrical and physical characteristics of the solar panel on the basis of cogeneration photoelectric modules. Integración de las ciencias fundamentals y aplicadas en el paradigm de la sociedad post-industrial: Colección de documentos cientificos «ΛΌΓΟΣ» con actas de la Conferencia Internacional Cientifica y Prάctica, 24 de abril de 2020. Barcelona, España: Plataforma Europea de la Ciencia. 2020. Vol. 2. P. 39-44. https://doi.org/10.36074/24.04.2020.v2.10.
4. Петрук В. Г., Коцюбинська С. С., Мацюк Д. В. Аналіз сучасного стану альтернативної енергетики та рекомендації по екологізації паливно-енергетичного комплексу України. Зб. матеріалів ІІ-го Всеукр. з’їзду екологів з міжнар. участю. Вінниця. 2016.
5. Кузнєцов М. П., Мельник О. А. Оптимальна побудова електроенергетичного комплексу на основі відновлюваних джерел енергії. Праці Інституту електродинаміки Національної академії наук України. 2018. Вип. 51. С. 28-32.
6. Кулік М. М., Горбулін В. П., Кириленко О. В. Концептуальні підходи до розвитку енергетики України (аналітичні матеріали). Київ, 2017. 78 с.
7. Кузнєцов М.П., Лисенко О.В., Мельник О.А. Особливості стохастичної оптимізації гібридних енергосистем на базі ВДЕ. Відновлювана енергетика. 2018. Вип. 13. С. 6-15.
8. Szafraniec A., Halko S., Miroshnik O., Figura R., Zharkov A., Vershkov O. Magnetic field parameters mathematical modelling of wind-electric heater. Przegląd Elektrotechniczny. 2021. Vol. 97(8). P. 36-41. https://doi.org/10.15199/48.2021.08.07.
9. Qawaqzeh M., Szafraniec A., Halko S., Miroshnyk O., Zharkov A. Modelling of a household electricity supply system based on a wind power plant. Przegląd Elektrotechniczny. 2020. № 96. P. 36-40. https://doi.org/10.15199/48.2020.11.08.
10. Dali M., Belhadj J., Roboam X. Hybrid solar–wind system with battery storage operating in grid-connected and standalone mode: control and energy management – experimental investigation. Energy. 2010. Vol. 35. Р. 2587-2595. https://doi.org/10.1016/j.energy.2010.03.005.
11. Miroshnyk O., Moroz O., Shchur T., Chepizhnyi A., Qawaqzeh M., Kocira S. Investigation of Smart Grid Operation Modes with Electrical Energy Storage System. Energies. 2023. Vol. 16(6). No 2638. https://doi.org/10.3390/en16062638.
12. Halko S., Suprun O., Miroshnyk O. Influence of Temperature on Energy Performance Indicators of Hybrid Solar Panels Using Cylindrical Cogeneration Photovoltaic Modules. 2021 IEEE 2nd KhPI Week on Advanced Technology, KhPIWeek 2021 - Conference Proceedings. Kharkiv, Ukraine. 2021. Р. 132- 136. https://doi.org/10.1109/KhPIWeek53812.2021.9569975.
13. Haffner S., Pereira L.F.A., Pereira L.A., Barreto L.S. Multistage Model for Distribution Expansion Planning With Distributed Generation—Part I: Problem Formulation. In IEEE Transactions on Power Delivery, April 2008. Vol. 23(2). P. 915-923. No https://doi.org/10.1109/TPWRD.2008 917916.
14. Qawaqzeh M., Al_Issa H. A., Buinyi R., Bezruchko V., Dikhtyaruk I., Miroshnyk O., Nitsenko V. The assess reduction of the expected energy not-supplied to consumers in medium voltage distribution systems after installing a sectionalizer in optimal place. Sustainable Energy, Grids and Networks. 2023. Vol. 34. No 101035. https://doi.org/10.1016/j.segan.2023. 101035.
15. Mahto T., Mukherjee V., Energy storage systems for mitigating the variability of isolated hybrid power system. Renewable and Sustainable Energy Reviews. 2015. Vol. 51. P. 1564-1577. https://doi.org/10.1016/j.rser.2015.07.012.
16. Roncero-Clemente C., Stepenko S., Husev O., Romero-Cadaval E. Vinnikov D. Maximum boost control for interleaved single-phase Quasi-Z-Source inverter. IECON 2017 - 43rd Annual Conference of the IEEE Industrial Electronics Society. 2017. P. 7698-7703. https://doi.org/10.1109/IECON.2017.8217349.
17. Tymchuk S., Miroshnyk O. Assess electricity quality by means of fuzzy generalized index. Eastern-European Journal of Enterprise Technologies. 2015. № 3/4(75). P. 26-31. https://doi.org/10.15587/1729-4061.2015.42484.
18. Kamel R.M. Standalone micro grid power quality improvement using inertia and power reserves of the wind generation systems. Renewable Energy. 2016. Vol. 97. P. 572-584. https://doi.org/10.1016/j.renene.2016. 06.004.
19. Molderink A., Bakker V., Bosman M.G.C., Hurink J.L., Smit G.J.M. Management and Control of Domestic Smart Grid Technology. In IEEE Transactions on Smart Grid, Sept. 2010. Vol. 1(2). P. 109-119. https://doi.org/10.1109/TSG.2010.2055904.
20. Bazaluk O., Postnikova M., Halko S., Kvitka S., Mikhailov E., Kovalov O., Suprun O., Miroshnyk O., Nitsenko V. Energy saving in electromechanical grain cleaning systems. Applied Sciences (Switzerland). 2022. Vol. 12(3). No 1418. https://doi.org/10.3390/app12031418.
21. Georgilakis P.S., Hatziargyriou N.D. A review of power distribution planning in the modern power systems era: Models, methods and future research. Electric Power Systems Research. 2015. Vol. 121. https://doi.org/10.1016/j.epsr.2014.12.010.
22. McDonald J. Adaptive intelligent power systems: Active distribution networks. Energy Policy. 2008. Vol. 36, is. 12. P. 4346-4351. https://doi.org/10.1016/j.enpol.2008.09.038.
23. Bazaluk O., Postnikova M., Halko S., Mikhailov E., Kovalov O., Suprun O., Miroshnyk O., Nitsenko V. Improving energy efficiency of grain cleaning technology. Applied Sciences (Switzerland). 2022. Vol. 12(10). P. 5190. https://doi.org/10.3390/app12105190.
24. Mondal A.H., Denich M. Hybrid systems for decentralized power. Energy for Sustainable Development. 2010. Vol. 14, is. 1. P. 48-55. https://doi.org/10.1016/j.esd.2010.01.001.
25. Luo Y., Shi L., Tu G. Optimal sizing and control strategy of isolated grid with wind power and energy storage system. Energy Conversion and Management. 2014. Vol. 80. P. 407-415. https://doi.org/10.1016/ j.enconman.2014.01.061.
26. Tan Y., Meegahapola L., Muttaqi K. M. A review of technical challenges in planning and operation of remote area power supply systems. Renewable and Sustainable Energy Reviews. 2014. Vol. 8. P. 876-889. https://doi.org/10.1016/j.rser.2014.07.034.
27. Rubanenko O., Yanovych V., Miroshnyk O., Danylchenko D. Hydroelectric Power Generation for Compensation Instability of Non-guaranteed Power Plants. 2020 IEEE 4th International Conference on Intelligent Energy and Power Systems (IEPS). Istanbul, Turkey. 2020. P. 52-56. https://doi.org/10.1109/IEPS51250.2020.9263151.
28. Vovk O., Kvitka S., Halko S., Strebkov O. Energy-saving сontrol of аsynchronous еlectric мotors of driving working machines. Modern Development Paths of Agricultural Production: Trends and Innovations. Cham: Springer International Publishing. 2019. Р. 415-423. https://doi.org/10.1007/978-3-030-14918-5_43.
29. Галько С. В., Жарков В. Я., Жарков А. В. Технології та засоби перетворення відновлюваних джерел енергії для приватних домогосподарств: монографія. Мелітополь: Люкс, 2019. 215 с.
30. Shevchenko S., Olubakinde E., Danylchenko D., Nazarenko I., Savchenko N., Shylkova L. Devising a method for reducing active power corona losses based on changing the structural parameters of a power transmission line. Eastern-European Journal of Enterprise Technologies. 2022. № 1/8(115). P. 18-25. https://doi.org/10.15587/1729-4061.2022.253384.
31. Iegorov O., Iegorova O., Miroshnyk O., Savchenko O. Improving the accuracy of determining the parameters of induction motors in transient starting modes. Energetika. 2020. Vol 66(1). P. 15-23. https://doi.org/10.6001/energetika.v66.i1.4295.
32. Voytenko V., Stepenko S., Velihorskyi O., Chakirov R., Roberts D., Vagapov Y. Digital control of a zero-current switching quasi-resonant boost converter. 2015 Internet Technologies and Applications (ITA). 2015. P. 365-369. https://doi.org/10.1109/ ITechA.2015.7317428.
33. Veligorskyi O., Kosenko R., Stepenko S. High-efficiency solar tracker development and effectiveness estimation. 2014 IEEE International Conference on Intelligent Energy and Power Systems (IEPS). Kyiv, 2014. P. 153-158. https://doi.org/10.1109/IEPS.2014.6874169.
34. Qawaqzeh M., Zaitsev R., Miroshnyk O., Kirichenko M., Danylchenko D., Zaitseva L. High-voltage DC converter for solar power station. International Journal of Power Electronics and Drive System. 2020. Vol. 11(4). P. 2135-2144. https://doi.org/10.11591/ijpeds.v11.i4.pp2135 -2144.
35. Stepenko S., Husev O., Vinnikov D., Ivanets S. FPGA control of the neutral point clamped quasi-Z-source inverter. 2012 13th Biennial Baltic Electronics Conference. Tallinn, Estonia. 2012. P. 263-266. https://doi.org/10.1109/BEC.2012.6376867.
36. Savchenko O., Miroshnyk O., Moroz O., Trunova I., Sereda A., Dudnikov S., Kozlovskyi O., Buinyi R., Halko S. Improving the efficiency of solar power plants based on forecasting the intensity of solar radiation using artificial neural networks. 2021 IEEE 2nd KhPI Week on Advanced Technology, KhPI Week 2021 – Conference Proceedings. 2021. Р. 137-140. https://10.1109/KhPIWeek53812.2021.9570009.
37. Belik M. Emergency island grids with small hydro power stations. In Proceedings of the 10th International Scientific Symposium on Electrical Power Engineering, Elektroenergetika 2019. 2019. P. 116-121.
38. Zaitsev R., Khrypunov G., Veselova N., Kirichenko M., Kharchenko M., Zaitseva L. The сadmium telluride thin films for flexible solar cell received by magnetron dispersion method. Journal of nano- and electronic physics. 2017. Vol. 9(3). P. 03015-1–03015-7. https://jnep.sumdu.edu.ua/en/full_article/2216.
39. Tymchuk S., Miroshnyk O. Calculation of energy losses in relation to its quality in fuzzy form in rural distribution networks. Eastern-European Journal of Enterprise Technologies. 2015. № 1(8). P. 4-10. https://doi.org/10.15587/1729-4061.2015.36003.
40. Roncero-Clemente C., Husev O., Miñambres-Marcos V., Stepenko S., Romero-Cadaval E, Vinnikov D. Comparison of three MPPT algorithms for three-level neutral-point-clamped qz-source inverter. 2013 International Conference-Workshop Compatibility And Power Electronics. Ljubljana, Slovenia. 2013. P. 80-85. https://doi.org/10.1109/CPE.2013.6601133.
41. Trunova I., Miroshnyk O., Savchenko O., Moroz O. The perfection of motivational model for improvement of power supply quality with using the one-way analysis of variance. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu. 2019. Т. 6. P. 163-168. https://doi.org/10.29202/ nvngu/2019-6/24.
42. Roncero-Clemente C., Stepenko S., Husev O., Miñambres-Marcos V., Romero-Cadaval E., Vinnikov D. Three-Level Neutral-Point-Clamped Quasi-Z-Source Inverter with Maximum Power Point Tracking for Photovoltaic Systems. Technological Innovation for the Internet of Things. DoCEIS 2013. IFIP Advances in Information and Communication Technology. Springer, Berlin, Heidelberg. 2013. Vol 394. https://doi.org/10.1007/978-3-642-37291-9_36.
43. Shevchenko S., Danylchenko D., Kuznetsov D., Petrov S. Use of capacitor batteries to improve the quality of electrical energy. 2021 IEEE 2nd KhPI Week on Advanced Technology, KhPI Week 2021 - Conference Proceedings. 666-669. https://doi.org/10.1109/KhPIWeek53812.2021. 9570023.
44. Shevchenko S., Danylchenko D., Dryvetskyi S. Experimental Research of the Electrical Strength of the Insulated System “Protected Wire-Line Insulator”. 2020 IEEE 4th International Conference on Intelligent Energy and Power Systems (IEPS). Istanbul, Turkey. 2020. P. 83-87. https://doi.org/10.1109/IEPS51250.2020.9263212.
45. Roncero-Clemente C., Husev O., Stepenko S., Vinnikov D., Romero-Cadaval E. Output voltage control system for a three-level neutral-point clamped quasi-Z-source inverter. Przegląd Elektrotechniczny. 2013. Vol. 89(5). P. 76–80.
Опубліковано
2023-11-15
Як цитувати
Галько, С., Мірошник, О., Сивенко, М., & Qawaqzeh, M. (2023). ВИЗНАЧЕННЯ ОПТИМАЛЬНИХ ПАРАМЕТРІВ НАКОПИЧУЮЧИХ ТА ГЕНЕРУЮЧИХ ДЖЕРЕЛ ЕЛЕКТРИЧНОЇ ЕНЕРГІЇ В АВТОНОМНИХ ЛОКАЛЬНИХ ЕЛЕКТРИЧНИХ СИСТЕМАХ. Праці Таврійського державного агротехнологічного університету імені Дмитра Моторного, 23(2), 134-151. Retrieved із https://oj.tsatu.edu.ua/index.php/pratsi/article/view/645
Розділ
Електроенергетика, електротехніка та електромеханіка

##plugins.generic.recommendByAuthor.heading##