DEVELOPMENT OF ALGORITHM FOR THE OPERATION OF A COMBINED POWER SUPPLY SYSTEM WITH RENEWABLE SOURCES
Abstract
Algorithms of forecast changes in the volume of electricity consumption from centralized and local sources as part of a combined power supply system are presented. In the complex of tasks of energy supply, the use of renewable sources is justified in many areas of activity: energy efficiency and efficiency of fossil fuels used for centralized energy supply; reducing the share of energy in the cost of agricultural products and the impact on the environment. Renewable energy has its own peculiarities, for example, more expedient use in local integrated energy supply systems. The relevant features and directions should be taken into account both in autonomous use and in the construction of combined power supply systems. The dependence of integrated accounting of hourly, daily and seasonal changes in electricity consumption on centralized and local energy supply systems has been developed. It is proposed to use an improved method of feasibility study of investment decisions at the stages of formalization of the technical task, based on the assessment of projected allowable costs for the construction of local power supply, which will allow consumers to have a positive economic effect and reduce the number of alternative solutions. The total discrepancy of the dependence, which interprets the amount of electricity consumption by different groups of consumers of the power supply system, does not exceed 5%, which allows us to recommend it for: forecasting electricity consumption according to current, regulatory and theoretical load schedules, regardless of the nature of their change; determination of daily volumes of energy consumption with the power supply system and the local system as part of the combined power supply system, regardless of the terms of use of renewable energy sources; determination of the power of power plants of local systems, automation devices, etc. It is determined that the proposed approach to the comprehensive substantiation of cases for the use of renewable energy sources, based on the original technical and economic indicators, algorithm, methodology and software for their calculation, allows to reduce the number of options and determine the positive and negative aspects of the functioning of the combined power supply system already at the first stages of the technical and economic assessment of the efficiency of its implementation.
References
2. Trunova I., Miroshnyk O., Savchenko O., Moroz O. The perfection of motivational model for improvement of power supply quality with using the one-way analysis of variance. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu. 2019. Vol. 6. Р. 163–168. https://doi.org/10.29202/nvngu/2019-6/24.
3. Miroshnuk O. O., Tymchuk S. O. Uniform distribution of loads in the electric system 0,38/0,22 kV using genetic algorithms. Technical Electrodynamics. 2013. Is. 4. P. 67–73. http://www.scopus.com/ inward/record.url?eid=2-s2.0-84885913005&partnerID=MN8TOARS (дата звернення 03.01.2024).
4. Bazaluk O., Postnikova M., Halko S., Kvitka S., Mikhailov E., Kovalov O., Suprun O., Miroshnyk O., Nitsenko V. Energy saving in electromechanical grain cleaning systems. Applied Sciences (Switzerland). 2022. Vol.12(3). P. 1418. https://doi.org/10.3390/app12031418.
5. Bazaluk O., Postnikova M., Halko S., Mikhailov E., Kovalov O., Suprun O., Miroshnyk O., Nitsenko V. Improving energy efficiency of grain cleaning technology. Applied Sciences (Switzerland). 2022. Vol. 12(10). P. 5190. https://doi.org/10.3390/app12105190.
6. BP Statistical Review of World Energy. 2019. URL: https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/statistical-review/bp-stats-review-2019-full-report.pdf (дата звернення 26.12.2023).
7. Tymchuk S., Miroshnyk O. Assess electricity quality by means of fuzzy generalized index. Easternt-European Journal of enterprise technologies. 2015. № 3/4(75). P. 26–31. https://doi.org/10.15587/1729-4061.2015.42484.
8. Karp I., Nikitin Y., Pyanykh K. Renewable sources in the energy supply systems of Ukrainian cities. Tekhnichna Elektrodynamika. 2021. № 1. P. 40–49. https://doi.org/10.15407/techned2021.01.040.
9. Kirichenko M. V., Drozdov A. N., Zaitsev R. V. Design of Electronic Devices Stress Testing System with Charging Line Based Impulse Generator. 2020 IEEE KhPI Week on Advanced Technology. 2020. P. 38–42.
10. Zharkin A., Novskiy V., Popov V., Yarmoliuk O. Іmproving the efficiency of distribution network control under the conditions of application of distributed sources generation of electrical energy and means of its accumulation. Tekhnichna Elektrodynamika. 2021. № 3. P. 37–44. https://doi.org/10.15407/techned2021.03.037.
11. Khrypunov M. G., Zaitsev R. V., Kudii D. A., Khrypunova A. L., Amplitude-time characteristics of switching in thin films of cadmium telluride. Journal of Nano- and Electronic Physics. 2018. Vol. 10(1). P. 01016.
12. Tymchuk S., Miroshnyk O. Calculation of energy losses in relation to its quality in fuzzy form in rural distribution networks. Eastern-European Journal of Enterprise Technologies. 2015. Vol. 1(8). P. 4–10 https://doi.org/10.15587/1729-4061.2015.36003.
13. Kudii D. A., Khrypunov M. G., Zaitsev R. V., Khrypunova A. L. Physical and Technological Foundations of the "Chloride" Treatment of Cadmium Telluride Layers for Thin-film Photoelectric Converters. Journal of Nano- and Electronic Physics. 2018. Vol. 10(3). P. 03007.
14. Hilorme T., Karpenko L., Fedoruk O., Shevchenko I. and Drobyazko S. Innovative Methods of Performance Evaluation of Energy Efficiency Projects. Academy of Strategic Management Journal. 2018. Vol. 17(2). P. 1544–1458.
15. Suganthi L., Iniyan S., Anand S. A. Applications of fuzzy logic in renewable energy systems. A review. 2015. Vol. 48. P. 585–607.
16. Fomichev V. On the efficiency of energy production in optimizing the parameters of socio-economic balance. Mining of Mineral Deposits. 2016. Vol. 10. P. 89–95.
17. Qawaqzeh M., Zaitsev R., Miroshnyk O., Kirichenko M., Danylchenko D., Zaitseva L. High-voltage DC converter for solar power station. International journal of power electronics and drive system. 2020. Vol. 11(4). P. 2135–2144. https://doi.org/10.11591/ijpeds.v11.i4.pp2135-2144.
18. Qawaqzeh M., Szafraniec A., Halko S., Miroshnyk O., Zharkov A. Modelling of a household electricity supply system based on a wind power plant. Przegląd Elektrotechniczny. 2020. № 96. P. 36–40, https://doi.org/10.15199/48.2020.11.08.
19. Halko S., Suprun O., Miroshnyk O. Influence of temperature on energy performance indicators of hybrid solar panels using cylindrical cogeneration photovoltaic modules. 2021 IEEE 2nd KhPI Week on Advanced Technology (KhPI Week). 2021. Р. 132–136. https://doi.org/ 10.1109/KhPIWeek53812.2021.9569975.
20. Halko S., Halko K., Suprun O., Qawaqzeh M., Miroshnyk O. Mathematical modelling of cogeneration photoelectric module parameters for hybrid solar charging power stations of electric vehicles. 2022 IEEE 3rd KhPI Week on Advanced Technology (KhPI Week). 2022. P. 1–6. https://doi.org/10.1109/KhPIWeek57572.2022.9916397.
21. Halko S., Miroshnyk O., Buinyi R., Moroz O., Savchenko O., Qawaqzeh M. Use of solar cogeneration modules for charging batteries of electric vehicles. 2023 IEEE 4th KhPI Week on Advanced Technology (KhPIWeek). 2023. P. 1–6. https://doi.org/10.1109/KhPIWeek61412. 2023.10312843.
22. Qawaqzeh M. Z., Szafraniec A., Halko S., Miroshnik O., Zharkov A. Modelling of a household electricity supply system based on a wind power plant. Przegląd Elektrotechniczny. 2020. Vol. 96(11). P. 36–40. https://doi.org/10.15199/48.2020.11.08.
23. Szafraniec A., Halko S., Miroshnik O., Figura R., Zharkov A., Vershkov O. Magnetic field parameters mathematical modelling of wind-electric heater. Przegląd Elektrotechniczny. 2021. Vol. 97(8). P. 36–41. https://doi.org/10.15199/48.2021.08.07.
24. Al_Issa H. A., Qawaqzeh M., Khasawneh A., Buinyi R., Bezruchko V., Miroshnyk O. Correct cross-section of cable screen in a medium voltage collector networkwith isolated neutral of a wind power plant. Energies. 2021. Vol. 14. P. 3026. https://doi.org/10.3390/ en14113026.
25. Pazyi V., Miroshnyk O., Moroz O., Trunova I., Savchenko O., Halko S. Analysis of technical condition diagnostics problems and monitoring of distribution electrical network modes from smart grid platform position. 2020 IEEE KhPI Week on Advanced Technology (KhPIWeek). 2020. Р. 57–60. https://doi.org/10.1109/KhPIWeek51551. 2020.9250080.
26. Olatomiwa L., Mekhilef S., Huda A., Olayinka S. Economic evaluation of hybrid energy systems for rural electrification in six geo-political zones of Nigeria. Renewable Energy. 2015. Vol. 83. P. 435–446.
27. Aslani A., Helo P., Naaranoja M. Role of renewable energy policies in energy dependency in Finland: System dynamics approach. Applied Energy. 2014. Vol. 113. P. 758–765.
28. Семененко І. В. Проектування біогазових станцій. Суми: ТОВ «ПФ Макден ІПП «Мрія-1», 1996. 347 с.
29. Галько С. В. Використання когенераційних фотоелектричних модулів для зарядки акумуляторів електромобілів. Праці Таврійського державного агротехнологічного університету. Технічні науки. 2019. Вип. 19, т. 3. С. 130–141. https://doi.org/10.31388/2078-0877-19-3-130-141.
30. Галько С. В. Експериментальне дослідження і визначення параметрів когенераційного фотоелектричного модуля для гібридних сонячних електростанцій. Традиційні та інноваційні підходи до наукових досліджень: матеріали Міжнар. наук. конф., 10 квіт. 2020 р. Луцьк, 2020. Т. 1. С. 83-90. https://doi.org/10.36074/10.04.2020.v1.10.
31. Belik M. Weather dependent mathematical model of photovoltaic panels. Renewable Energy and Power Quality Journal. 2017. Vol. 1(15). P. 698–701.
32. Belik M. Emergency island grids with small hydro power stations. In Proceedings of the 10th International Scientific Symposium on Electrical Power Engineering, Elektroenergetuka 2019. 2019. P. 116–121.
33. Voytenko V., Stepenko S., Velihorskyi O., Chakirov R., Roberts D., Vagapov Y. Digital control of a zero-current switching quasi-resonant boost converter. 2015 Internet Technologies and Applications (ITA). Wrexham, UK. 2015. Р. 365–369. https://doi.org/10.1109/ ITechA. 2015.7317428.