ENHANCEMENT OF ENERGY SECURITY OF ELECTRICAL SUPPLY OF CONSUMERS OF ELECTRICAL TRANSMISSION LINES OF 0.38 kV USING THE MONITORING SYSTEM OF VIRTUAL MEASURING DEVICES

Keywords: measurement, DC bridge,

Abstract

The most accurate determination of the location of damage on overhead power lines is important for ensuring energy security, stability of power systems, and reliability of power supply to consumers. There are various mathematical methods used for this, in particular the distance-to-fault methods are based on the estimation of parameters of the emergency state and are widely used in digital protection relay terminals and power line fault locators. The purpose of the article is to analyze the existing methods of ensuring the energy security of power transmission lines with a voltage of 0,38 kV in emergency situations to determine the location of damage on overhead power transmission lines and estimate the error using parameters of the emergency state. The study successfully fulfilled all the tasks, in particular, it identified the problems of operating overhead power lines with a voltage of 0,38 kV and conducted a more detailed analysis of them. The principle that was considered in the study to create a reliability model that takes into account the influence of the external environment and possible assumptions allows to obtain a comprehensive and more accurate assessment of the reliability of power supply systems operating under the influence of various factors. Reliability indicators must be calculated taking into account the specifics of operation of specific power supply systems. The resulting mathematical model for forecasting can be used to optimize maintenance schedules, repair and prevention of systems. The work also analyzes modern approaches to solving the problems of ensuring a safe and stable electricity supply in order to meet the modern needs of electricity consumers. The developed technique of the authors allows taking into account various factors, including errors in measuring currents and voltages in an emergency state, which significantly affect the accuracy of determining the location of a fault in overhead power lines. This approach allows to reduce the time required for disaster recovery work by more accurately determining the location of the damage and the size of the inspection area.

References

1. Ghadi M., Rajabi A., Ghavidel S., Azizivahed A., Li L., Zhang J. From active distribution systems to decentralized microgrids: A review on regulations and planning approaches based on operational factors. Appl. Energy 2019, 253, 113543.
2. Schwan M., Ettinger A., Gunaltay S. Probabilistic reliability assessment in distribution network master plan development and in distribution automation implementation. Proceedings of the CIGRE, 2012 Session, Paris, France, 26–30 August. 2012. P. 4–203.
3. Alberto Escalera A., Prodanovi´c M., Castronuovo E. D. Analytical methodology for reliability assessment of distribution networks with energy storage in islanded and emergency-tie restoration modes. J. Electr. Power Energy Syst. 2019. Vol. 107. P. 735–744.
4. Lebedev V., Filatova G., Timofeev A. Increase of accuracy of the fault location methods for overhead electrical power lines. Adv. Mater. Sci. Eng. 2018. e3098107.
5. Saha M. M., Izykowski J., Rosolowski E. Fault Location on Power Networks; Springer: London, UK, 2010. P. 437.
6. Schweitzer E. O. A review of impedance-based fault locating experience. Proceedings of the 14th Annual Iowa–Nebraska System Protection Seminar, Omaha, NE, USA, 16 October. 1990. P. 1–31.
7. Minullin R. G. Detecting the faults of overhead electric-power lines by the location-probing method. Russ. Electr. Eng. 2017. Vol. 88. P. 61–70.
8. CТО56947007-29.240.55.224-2016 Guidelines for Determining the Places of Damage to Overhead Lines with a Voltage of 110 kV and Higher (Date of Introduction: 17.08.2016). PJSC FGC UES.
9. Ilyushin P. V. Emergency and post-emergency control in the formation of micro-grids. E3S Web Conf. 2017. Vol. 25. e 02002.
10. Zaporozhets A. O. Studies in Systems, Decision and Control. Control of Overhead Power Lines with Unmanned Aerial Vehicles (UAVs).. 2021. Vol. 359. P. 35-53.
11. Senderovich G. A., Zaporozhets A. O., Gryb O. G., Karpaliuk I. T., Shvets S. V., Samoilenko I. A. Experimental studies of the method for determining location of damage of overhead power lines in the operation mode. Control of Overhead Power Lines with Unmanned Aerial Vehicles (UAVs). 2021. Vol. 359. P. 55–77.
12. Gu C. [et al.]. Feasibility of the Potential for Wave and Wind Energy Hybrid Farm to Supply Offshore Oil Platform in Gulf of Mexico. 2021. https://doi.org/10.4043/31124-MS.
13. Gulkov Y. V., Turysheva A. V. 2021. Reducing the influence of lightning overvoltages on the electrical insulation of overhead power lines 6 (10) KV. News of the Tula State University. Engineering Sciences. 2021. Vol. 5. P. 452–458.
14. Gunger Y. R., Lavrov Y. A. Experience in the construction and operation of 6-10 kV power transmission lines on steel poles of the ELSI company in the oil and gas complex. Territory Oil and Gas. 2008. Vol. 6. P. 178–181.
15. Ivanov D. M. Application of automatic sectioning in order to improve the reliability of power supply to consumers of the overhead distribution network 6 (10) kV. Age of Science. 2022. Vol. 30. P. 49–58.
16. Kockel C., Nolting L., Priesmann J. and Praktiknjo A. 2022. Does renewable electricity supply match with energy demand – A spatio-temporal analysis for the German case. Applied Energy. 2022. Vol. 308(C). e118226. https://doi.org/10.1016/j.apenergy. 2021. 118226. 17. Korobka S., Syrotyuk, S., Zhuravel, D., Boltianskyi, B., Boltianska, L. Solar dryer with integrated energy Unit. Problems of the Regional Energetics, 2021, (2). 60-75.
18. Syrotyuk S., Boyarchuk V., Syrotyuk V., Korobka S., Syrotyuk H., Boltianskyi B. Peculiarities of modeling heat pumps in the labview environment. Інформаційні технології в енергетиці та агропромисловому комплексі: матеріали ХІ Міжнар. наук. конференції (Львів, 04−06 жовтня 2022 р.). Львів: ЛНУП, 2022. С. 16–18.
19. A. Skliar, B. Boltianskyi, N. Boltianska, D. Demyanenko. Research of the cereal materials micronizer for fodder components preparation in animal husbandry. Modern Development Paths of Agricultural Production. 2019. Ch. 2. С. 249–259.
20. Скляр О. Г., Скляр Р. В., Болтянський Б. В. Обґрунтування техніко-технологічних рішень створення оптимального мікроклімату в птахівницькому приміщенні. Вісник Херсонського національного технічного університету. 2022. № 2(81). С. 32–38.
Published
2024-07-02
How to Cite
Коробка, С. В., Стукалець, І. Г., Бабич, М. І., Сиротюк, С. В., Скляр, О. Г., Болтянський, Б. В., & Скляр, Р. В. (2024). ENHANCEMENT OF ENERGY SECURITY OF ELECTRICAL SUPPLY OF CONSUMERS OF ELECTRICAL TRANSMISSION LINES OF 0.38 kV USING THE MONITORING SYSTEM OF VIRTUAL MEASURING DEVICES. Proceedings of Dmytro Motornyi Tavria State Agrotechnological University, 24(1), 151-169. https://doi.org/10.32782/2078-0877-2024-24-1-11
Section
Електроенергетика, електротехніка та електромеханіка

Most read articles by the same author(s)